Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 53: 110214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445199

RESUMEN

Traditionally, biosorbents have been used to remove contaminants from polluted water, such as wastewater, landfill leachate, rainwater or drinking water. However, two alternative uses of biosorbents have been proposed relatively recently: the removal of heavy metals from fruit juices by biosorption and the use of saturated biosorbents as animal feed. Because these biosorbents are in contact with food or are used as animal feed, the concentration of contaminants in biosorbents must be known. In addition, the characterization of biosorbents is crucial because biosorbent properties affect both adsorption efficiency and the performance of full-scale biosorbent systems. This article presents data from Fourier transform infrared spectroscopy (FTIR) analysis, and the concentration of toxic metals (determined by ICP-MS) as well as pesticide residues was determined in ten biomass samples, namely, pea skins, straw, seaweed Fucus vesiculosus, wheat bran, rye bran, raspberry seeds, peat, buckwheat husks, highbush blueberry pulp, and blackcurrant pulp. Selected biomass samples were also characterized by scanning electron microscopy (SEM), nitrogen physisorption analysis, and pyrolysis-gas chromatography-mass spectrometry (Py-GC/ MS/FID) analysis.

2.
Materials (Basel) ; 17(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203861

RESUMEN

Nanolayered coatings are proposed for use in microelectronic devices where the size/performance ratio is becoming increasingly important, with the aim to achieve existing quality requirements while reducing the size of the devices and improving their ability to perform stably over multiple cycles. Si-SiO2-W structures have been proposed as a potential material for the fabrication of microelectronic devices. However, before such materials can be implemented in devices, their properties need to be carefully studied. In this study, Si-SiO2-W nanolayered structures were fabricated and subjected to numerous thermal treatment cycles at 150 °C. A total of 33 heating cycles were applied, resulting in a cumulative exposure of 264 h. The changes in chemical bonds and microstructure were monitored using Fourier Transform Infrared spectrometry (FTIR) and scanning electron microscopy (SEM). The FTIR signal at 960 cm-1, indicating the presence of W deposited on SiO2, was selected to characterize the thermal stability during the heating cycles. The estimated signal intensity variation closely resembled the normal inhomogeneity of the nanolayers. The increase in slope intensity was estimated to be 1.7 × 10-5.

3.
Materials (Basel) ; 15(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36013779

RESUMEN

This paper presents new thermo-reflective coatings with different properties. Basic, anti-corrosion and self-extinguishing coatings were analyzed. The coatings were obtained with a thickness varying from 1 to 3 mm. The coatings were subjected to detailed tests assessing their physical-mechanical properties, i.e., tensile strength, abrasion, pull-off test, water absorption, vapor permeability and thermal properties, i.e., the thermal performance of the reflective coatings, thermal transmittance, thermogravimetric analysis, differential scanning calorimetry, as well as thermomechanical analysis and thermal conductivity. In addition, the possibility of using such coatings in a wide range of temperatures and during application to various materials used as a substrate, i.e., concrete, metal and rigid polyurethane foam, was tested. The thermal analysis of coatings revealed that materials are stable to temperatures above 200 °C, there are no thermal transitions in the negative temperature region and shrinking in low temperatures is minimal (less than 0.5%). From the data obtained within the framework of this study, it can be concluded that anticorrosive, basic and self-extinguishing coatings are eligible for thermo-insulation applications in temperatures up to 200 °C.

4.
Materials (Basel) ; 14(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668608

RESUMEN

A second-generation bio-based feedstock-tall oil fatty acids-was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym® 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m3. Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym® 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2-25.9 mW/(m·K).

5.
Materials (Basel) ; 13(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344553

RESUMEN

High-quality rigid polyurethane (PU) foam thermal insulation material has been developed solely using bio-polyols synthesized from second-generation bio-based feedstock. High functionality bio-polyols were synthesized from cellulose production side stream-tall oil fatty acids by oxirane ring-opening as well as esterification reactions with different polyfunctional alcohols, such as diethylene glycol, trimethylolpropane, triethanolamine, and diethanolamine. Four different high functionality bio-polyols were combined with bio-polyol obtained from tall oil esterification with triethanolamine to develop rigid PU foam formulations applicable as thermal insulation material. The developed formulations were optimized using response surface modeling to find optimal bio-polyol and physical blowing agent: c-pentane content. The optimized bio-based rigid PU foam formulations delivered comparable thermal insulation properties to the petro-chemical alternative.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...